International Journal on Software Tools for Technology (2006) 8(4/5): 397-409

DOI 10.1007/s10009-005-0216-7

SPECIAL

VERIFICATION

Giuseppe Della Penna - Benedetto Intrigila -

Marisa Venturini Zilli

SECTION ON RECENT ADVANCES

Igor Melatti -

IN HARDWARE

Enrico Tronci -

Finite horizon analysis of Markov Chains with the Murg verifier

Published online: 4 April 2006
© Springer-Verlag 2006

Abstract In this paper we present an explicit disk-based
verification algorithm for Probabilistic Systems defining dis-
crete time/finite state Markov Chains. Given a Markov Chain
and an integer k (horizon), our algorithm checks whether the
probability of reaching an error state in at most & steps is be-
low a given threshold. We present an implementation of our
algorithm within a suitable extension of the Murg verifier.
We call the resulting probabilistic model checker FHP-Murg
(Finite Horizon Probabilistic Murg). We present experimen-
tal results comparing FHP-Murg with (a finite horizon sub-
set of) PRISM, a state-of-the-art symbolic model checker for
Markov Chains. Our experimental results show that FHP-
Murg can handle systems that are out of reach for PRISM,
namely those involving arithmetic operations on the state
variables (e.g. hybrid systems).

Keywords Automatic verification - Model checking -
Markov chains - Probabilistic model checking - Probabilistic
verification

1 Introduction

Model-checking techniques [9, 17, 22, 23, 29, 34] are widely
used to verify the correctness of digital hardware, embedded

This research has been partially supported by MURST projects
MEFISTO and SAHARA.

This paper is a journal version of the conference paper [16].

G. Della Penna (X)) - 1. Melatti

Dipartimento di Informatica, Universita di L’ Aquila, Coppito 67100,
L’ Aquila, Italy

E-mail: {dellapenna, melatti}@di.univagq.it

E. Tronci - M. Venturini Zilli

Dipartimento di Informatica, Universita di Roma “La Sapienza”,
Via Salaria 113, 00198 Rome, Italy

E-mail: {tronci, zilli}@di.uniromal.it

B. Intrigila

Dipartimento di Matematica Pura ed Applicata, Universita di Roma
“Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
E-mail: intrigil@mat.uniromaz2.it

software and protocols by modeling such systems as Nonde-
terministic Finite State Systems (NFSSs).

However, there are many reactive systems that exhibit
uncertainty in their behavior, i.e. which are stochastic sys-
tems. Examples of such systems are: fault tolerant systems,
randomized distributed protocols and communication pro-
tocols. Typically, stochastic systems cannot be conveniently
modeled using NFSSs, but they can often be modeled by
Markov Chains [3, 19]. Roughly speaking, a Markov Chain
can be seen as an automaton labelled with (outgoing) prob-
abilities on its transitions.

For stochastic systems, correctness can only be stated
using a probabilistic approach, e.g. using a Probabilistic
Logic (e.g., [11, 20, 36]). This motivates the develop-
ment of Probabilistic Model Checkers [2, 12, 24], i.e.
model-checking algorithms and tools whose goal is to
automatically verify (probabilistic) properties of stochastic
systems (typically Markov Chains). For example, a prob-
abilistic model checker may automatically verify a system
property like “the probability that a message is not delivered
after 0.1 s is less than 0.80.”

Many methods have been proposed for probabilistic
model checking (e.g. [4, 11, 14, 20, 21, 26, 31, 33, 36]).

To the best of our knowledge, currently, the state-of-the-
art probabilistic model checker is PRISM [2, 25, 32]. PRISM
overcomes the limitations due to the use of linear algebra
packages in Markov Chain analysis by using Multi Terminal
Binary Decision Diagrams (MTBDDs) [10] (sometimes also
referred as ADDs [1]), a generalization of Ordered Binary
Decision Diagrams (OBDDs) [8] allowing real numbers in
the interval [0, 1] on terminal nodes. More precisely, PRISM
can carry out the required Markov Chain analysis using a
matrix-based approach (based on linear algebra packages),
a symbolic approach (based on the CUDD package [13]) as
well as a hybrid approach. The user can choose the best ap-
proach for the problem at hand.

Here we are mainly interested in the automatic analysis
of discrete timelfinite state Markov Chains modeling Dis-
crete Time Hybrid Systems. Such Markov Chains can in prin-
ciple be analyzed using PRISM. However, our experience is

398

G. Della Penna et al.

that, using PRISM on our systems, quite soon we run into a
state explosion problem, i.e. we run out of memory because
of the huge OBDDs built during the model-checking pro-
cess. This is due to the fact that hybrid systems dynamics
typically entails many arithmetical operations on the state
variables. This makes life very hard for OBDDs, thus mak-
ing the usage of a symbolic probabilistic model checker (e.g.
like PRISM) on such systems rather problematic.

Indeed, our experience shows that Explicit Model Check-
ing can outperform Symbolic Model Checking in automatic
analysis of Hybrid Control Systems [15]. This suggested
us to explore the possibility of devising an explicit disk-
based algorithm for automatic finite horizon safety analysis
of Markov Chains. In this paper we present our algorithm as
well as experimental results showing its effectiveness. Our
results can be summarized as follows.

— In Sects. 3 and 4 we present an explicit algorithm for au-
tomatic verification of discrete time/finite-state Markov
Chains. Given a Markov Chain M, our algorithm checks
whether the probability of reaching a given state s within
k steps is less than a given bound p. Our algorithm is
disk based, thus, because of the large size of modern hard
disks, state explosion is hardly a problem for us. Compu-
tation time instead is our bottleneck: our algorithm can
trade RAM memory with computation time, i.e. the more
RAM available the faster our computation. To the best
of our knowledge, this is the first time that such a disk-
based algorithm for probabilistic model checking is pro-
posed.

— In Sect. 5, we present an implementation of our algo-
rithm within the Murg verifier [29]. We call the resulting
probabilistic model checker FHP-Murg (Finite Horizon
Probabilistic Murg).

— In Sect. 6.1, we present experimental results comparing
FHP-Murg with PRISM on two suitably modified ver-
sions of the dining philosophers protocol included in the
PRISM distribution. Our experimental results show that
FHP-Murg can handle systems that are out of reach for
PRISM. However, as long as PRISM does not hit state
explosion, PRISM is faster than FHP-Murg (as to be ex-
pected).

Note, however, that PRISM can handle more general
models than FHP-Murg, and can verify more general
properties (namely all PCTL [20] properties) than FHP-
Murg. In fact, FHP-Murg can only verify finite hori-
zon safety properties for Markov Chains, a subclass (al-
though an important one) of the verification tasks that
PRISM can handle.

— In Sect. 6.2, we present experimental results on using
FHP-Murg for a probabilistic analysis of a “real-world”
hybrid system, namely the Turbogas Control System of
the co-generative power plant described in Ref. [15]. Be-
cause of the arithmetic operations involved in the def-
inition of the system dynamics, this hybrid system is
out of reach for OBDDs (and thus for PRISM), whereas
FHP-Murg can complete the (finite horizon) verification
within reasonable time.

2 Basic notation

Let S be a finite set of states. We regard functions from S to
the real interval [0, 1] and functions from § x § to [0, 1] as
row vectors and as matrices, respectively.

If x is a vector and s € S we also write X; or (x)y for
x(s). Similarly, if P is a matrix and s,¢ € S we also write
P, ; or (P), for P(s, t).

On vectors and matrices we use the standard matrix oper-
ations. Namely: xP is the row vectory s.t. ys = > ;¢ X;Pj s

and AB is the matrix Cs.t. Gy, =} ;o5 As, B .. We define

A" in the usual way, i.e. A? =1, A"t = A”A, where I (the
identity matrix) is the matrix defined as follows: I(s, j) = if
(s = j) then 1 else 0.

Finally, we denote with 3 the set {0, 1} of Boolean val-
ues. As usual O stands for false and 1 stands for true.

We give some basic definitions on Markov Chains; for
further details see, e.g. [3]. A distribution on § is a func-
tionx : § — [0, 1] s.t. D ;¢ x(i) = 1. Thus a distribution
on S can be regarded as a |S|-dimensional row vector x. A
distribution x represents the state s € S iff x(s) = 1 (thus
x(i) = 0 when i # s). If distribution X represents s € S, by
abuse of language we also write X € S to mean that distribu-
tion X represents a state and we use x in place of the element
of § represented by x. In the following we often represent
states using distributions. This allows us to use matrix nota-
tion to define our computations.

Definition 1 A Discrete Time Markov Chain (just Markov
Chain in the following) is a triple M = (S, P, ¢) where S
is a finite set (of states),q € SandP : § x § — [0, 1]isa
transition matrix, i.e. for all s € §, ZteS P(s,t) = 1. (We
included the initial state ¢ in the Markov Chain definition
since in our context this will often shorten the notation).

Given the distribution X, the distribution y obtained by
one execution step of Markov Chain M = (§, P, ¢) is com-
puted as y = xP. In particular, if x(s) = 1 we have that
Vily(t) = (P)s]

Definition 2 An execution sequence (or path) in the
Markov Chain M = (S,P,q) is a nonempty (finite or
infinite) sequence mw = sos1s2 ... Where s; are states and
P(s;i, si41) > 0,i =0,1,...

— If m = 508152 ... we write 7 (k) for sy.

— We write 7 |k for the sequence ss157 . . . Sk—1.

— The length of a path is denoted w1th |r|. The length
of a finite path w = sgs1s2 ... s8¢ is k (number of transi-
tions), whereas the length of an infinite path is w.

— We denote with Path(M, s) the set of infinite paths 7
in Mst.t(0) =s. f M = (§5,P,g) we write also
Path(M) for Path(M, q).

— We denote with Path; (M, s) the set of infinite paths 7
in M s.t. 7(0) = s and |7| = k. In the same way,
Path<, (M, s) is the set of infinite paths 7 in M s.t.
7(0) =s and |7| < k.

Finite horizon analysis of Markov Chains with the Murg verifier

399

Definition 3 Let X be a set. Then a o-algebra F is a
nonempty collection of subsets of X such that the follow-
ing holds

1. The empty set is in F'.

2. If Aisin F, then so is the complement of A.

3. If A, is a sequence of elements of F, then the union of
the A,sisin F.

If S is any collection of subsets of X, then we can always
find a o-algebra containing S, namely the power set of X.
By taking the intersection of all o-algebras containing S, we
obtain the smallest such o -algebra. We call the smallest o -
algebra containing S the o -algebra generated by S.

Definition 4 For s € S we denote with) (s) the smallest
o-algebra on Path(M,s) which, for any finite
path p starting at s, contains the all the paths in
{m € Path(M, s)|p is a prefix of 7}.

The probability measure Prob on) (s) is the unique
measure with

Pr ({rr € Path (M, s) |p is a prefix of 7 })
k=1
=Pr(p) = HOP(p(i),p(i +1)

=P (0 ©0),p (1P (P1).pQ)...P>pGKk=1),pK)
(1

where k = |p]|.

3 Finite horizon safety verification of Markov Chains

Given a Markov Chain, we want to compute the probability
that a path of length & starting from a given initial state g
reaches a state s satisfying a given Boolean formula ¢ (i.e.,
such that ¢(s) = 1). If ¢ models an error condition the
above computation allows us to compute the probability of
reaching an error in at most k transitions.

Problem 1 Let M = (S,P, g) be a Markov Chain, k €
N, and ¢ be a Boolean function on S. We want to compute
P(M,k,¢) =Pr((Fi <k ¢(m(i))) | # € Path(M)), that
is the probability of reaching a state satisfying ¢ in at most
k steps in the Markov Chain M (starting from M initial
state q).

Definition 5 Let M = (S, P, ¢) be a Markov Chain and let
¢ be a Boolean function on S, i.e. ¢ : § — B. We define
the Markov Chain My as My = (S, Py, q), where for all
s, tes,

P(s, 1) if = (s)
Py(s.1)=1{ 1 if p(s) A (s = 1)
0 if p(s) A (s # 1)

2)

In other words, the Markov Chain (S, Py, ¢) is obtained
from (S, P, g) by removing all outgoing edges from any
state s satisfying ¢ (error state) and replacing such outgo-
ing edges with just one edge leading back to s. Thus, once
an error state is entered there is no way to leave it. This, in
turn, means that for (S, Py, ¢) the probability of reaching in
exactly k steps a state satisfying ¢ is exactly the same as the
probability of reaching in at most k steps a state satisfying
¢. Note that, according to Definition 1, (S, Py, ¢) is indeed
a Markov Chain.

From the above considerations it follows that
P(M,k,¢) can be computed from Py as shown in
Proposition 1. Essentially Proposition 1 is a specialization
to our finite horizon case of known results on PCTL Model
Checking of Markov Chains (e.g., [2, 20]). In order to give
a formal proof of Proposition 1, let us first introduce the
following Lemma 2.

Lemmal Let M = (S, P, q) be a Markov Chain, letk € N
be an integer, and let ¢ : S — B be an atomic proposition.
Then,

Prob{r € Path(M) | 3i <k : ¢((i))}
= Prob{n € Path(My) | ¢ (r(k))}

Proof Note that, for all k¥ € N, we can limit to finite
paths, so Prob{w € Path(M) | i < k : ¢(x(@@))} =
Prob{mr € Pathy(M) | 3i < k : ¢((i))} and Prob{r €
Path(My) | ¢(m(k))} = Prob{m € Pathy(My) | ¢(7(k))}.

Thus, it is sufficient to prove that

Prob{m € Pathy (M) | 3i <k: ¢((i))}
= Prob{r € Pathk(/\/l¢) | ¢ ((k))}

To this end, we will use the following objects:

— ¢r(Pathg (M)) = {7 € Pathy (M) | Ji <k: ¢p(m()}
this is the set Path; without the paths where ¢ never
holds;

—mp(p,7r) = min{0 < i < k| ¢(x(@))}, where m €
¢r (Pathg (M)); this is a function that, given ¢ and a path
7 where ¢ holds, returns the index of the first state of
where ¢ holds;

— Pathy(M) = {p = s0...s5; | 3= € ¢ (Pathy(M)) :
(pisaprefix of 1 AT = my (¢, m)))}; for each path 7 in
¢r (Pathy (M), this set contains the prefix of 7 that ends
in the first state satisfying ¢.

To shorten formulas, we define A = ¢ (Pathg(M)),
B = Pathgy(M), D = ¢ (Pathy(My)), m = my(¢, w) and
C = Pathy_ (¢,7)((S, P, m(my(¢p, 7)))). Hence we have
that

Prob{m € Pathy (M) | 3i <k : ¢(m(i))}

= Prob{x € Pathy (M) | 7 € A) ©)

k—1
Yo TP, 7+ 1)

TeA j=0

“)

400

G. Della Penna et al.

m—1
H P(x(j), 7(j + 1))

neB
=)
> H P(p(h). p(h + 1))
peC h=0
m—1
Y [[P@(). =G+ 1) (©)
weB j=0
m—1 k—1
ST PG =G+ 1) (]‘[1) ()
meB j=0 h=m
k—1
Yo [P 7+ 1)) ®)
weD j=0
Prob{m € Pathy(My) | 3i <k: ¢((i))} (&)

Prob{m e Pathy(My) | ¢ ((k))} (10)

In the step from (3) to (4) we used Definition 4, while in
transforming (3) to (6) we used the fact that for all s € S,
neNand1l <k <mn,

k—1
> [IP@EG.xG+ 1) =1

7 ePath, (M,s) j=0

Moreover, the final equivalence (from (9) to (10)) is due
to Definition 5: in fact, a w € Path; (M), when reaches a
state s in which ¢ holds, is forced to infinitely cycle on s with
probability 1 (every other transition from s has probability
0, so it is not activated). O

Proposition1 Let M = (S,P,q), and let ¢ be a
Boolean function on S. Then P(M,k,¢) = Pr((F <
k ¢(r(i)) | w € Path(M)) = Y | 4, (@Pp1)s

Proof By Lemma 1, it is sufficient to prove that

Prob{r € Path(My) | $(r(k))} = > (qPy")s
s | ¢(s)
From Markov Chain theory [3], we have that, for all s € S,

Prob{r € Path(My) | w(k) = s} = (qP4¥);. So, we have
that

Prob{r € Path(My) | ¢ (r(k))}
= Prob{n € Path(My) | Vi) (k) = s}
> Prob{r € Path(My) | (k) = s}
s 19G)

> @Pyh)

s1oGs)

Jecyifiiost

Fig. 1 A Markov Chain

Example 1 Consider the Markov Chain M = (S, P, q) with
S ={1,2},P=[0503] and q = [1 0] (i.e. distribution q
denotes state 1). The usual automata-like representation for

M is given in Fig. 1. Let ¢ be defined as follows: ¢ (s) =

(s = 2), i.e. only state 2 satisfies ¢.

Then Py = [Og ?3] and from Proposition 1 we have:

PM,1,¢) =02, PM,2,¢) = 036, P(M,3,¢) =
0.488.

4 Probabilistic finite-state systems

The Markov Chain definition given in Definition 1 is appro-
priate to study mathematical properties of Markov Chains.
However, Markov Chains arising from probabilistic concur-
rent systems are usually defined using a suitable program-
ming language rather than a stochastic matrix. As a matter
of fact the (huge) size of the stochastic matrix of concur-
rent systems is one of the main obstructions to overcome in
probabilistic model checking.

A Markov Chain is presented to a model checker by
defining (using a suitable programming language) a next
state function that returns the needed information about the
immediate successors of a given state. The following defini-
tion formalizes this notion.

Definition 6 A Probabilistic Finite State System (PFSS) S
is a 4-tuple (S, q, A, next), where S is a finite set (of
states), ¢ € S, A is a finite set of labels and next is
a function taking a state s as argument and returning a
set next(s) of triplets (t,a,p) € S x A x [0,1] s.t.

(t,a,p)enext(s) D= L.

We can associate a Markov Chain to a PFSS in a unique
way.

Definition 7 1. Let S = (S, ¢, A, next) be a PFSS. The
Markov Chain associated to S is 8™ = (S, P, ¢), where
P(s, 1) = 3 4 pyenexts) P-

2. Given k € N and a Boolean function ¢ on § we write
P (S, k, ¢) for P(S™C, k, ¢) as defined in Problem 1.

Problem 1 for PFSSs becomes: given a PESS S, compute
P(S,k, ¢). We want to compute P (S, k, ¢) without gen-
erating the transition matrix for Markov Chain S™¢: using
Proposition 1 this can be done as shown in Proposition 2.
To prove Proposition 2, let us first introduce the following
Lemma 2.

Finite horizon analysis of Markov Chains with the Murg verifier

401

/+x For 1 =1, ... k + 1, Q(i) is a queue of

state-probability pairs (s, p) =*/
P((S, g, A, next), k, ¢) {

if ¢(q)

return (1) ;

i=20; r=20;

Enqueue(Q(i), (g, 1));

foreach i = 0 ... k = 1 do {

/#* BF level i begins x/

while (Q (1) is nonempty) {
(s, p) = Dequeue(Q(i));
foreach (s’, a, p’) in next(s) do {
if ¢(s’) |
r =r + pxp’;

} else Enqueue(Q(i + 1),
}
}
}
return (r);

}

(s", p*p’));

Fig. 2 Computation of P (S, k, ¢)

Lemma2 Let S = (S, q, A, next) be a PFSS, k € Nbe a
nonnegative integer and ¢ be a Boolean function on S such
that ¢(q) = 0. Finally, let P be the function that computes
P(S,k,¢)asinFig.2. Then, for all0 < i < k the following
holds.

At the beginning of level i in function P(S, k, ¢), Q (1)
contains n pairs (S1, p1), - .., (Sn, pn), where n is the num-
ber of the paths w1, ..., m, such that, forall 1 <m < n,
satisfies the following properties:

1. |t =1i;

2. 1(0)=gq;
3. 7)) = sy,
4. P(n) = p;

S forall0< j<i ¢Gr(j)) =0.

Proof The proof is done by induction on i. As induction ba-
sis we have that, at the beginning of BF level 0, Q (1) con-
tains only the pair (¢, 1), and in fact the only path of length O
starting from ¢ is ¢ itself. Moreover, ¢ (¢) = 0O and P(g) = 1
(i.e. the path consisting only of ¢ has probability 1).

As induction step, we suppose our statement valid for
i, and we prove it for i + 1. To this end, let 7y, ..., 7, be
the paths of length i + 1 starting from ¢ such that, for all
l<m<nand0 < j <i+1, ¢(my(j)) = 0. Moreover,
let Q (i) be the queue at the beginning of level i.

By induction hypothesis we have that, forall 1 <m < n,
the pairs (7, (1), P(7,| (i + 1))) (containing the last but one
state of m,, together with the probability of x,, without the
last state) were stored in the queue Q (i) . During the level i
computation, these pairs are dequeued and expanded to cre-
ate the queue Q (1+1) . Now, suppose by absurd that exists a
1 < m < n such that (7, (i + 1), P(77,)) is not enqueued in
Q(i+1) during the level i computation. Since, by induction
hypothesis, (77, (i), P(7,|(i +1))) ison Q (1), we have that

(Tm(@+1), P(r,)) will be eventually enqueued in Q (1+1) .
In fact, P(,,) = P(m,| (0 + 1))P(my, (@), wpy (i 4+ 1)) and P
makes exactly this computation, with p = P(mr,, |(0 + 1)) (it
is taken from Q (i)) and p’ = P(m;, (i), mn (i + 1)). More-
over, no error states are enqueued at this level, so by induc-
tion hypothesis forall 1 < m < nand0 < j < i+ 1,
¢(m())) =0.

On the other hand, suppose by absurd that a pair (s, p)
is enqueued in Q (i+1),butforall 1 <m < n (5,p) #
(Sm» pm)- By induction hypothesis, Q (i) contains only
pairs (7, (i), P, | (i 4+1))) satisfying conditions 1-5. Thus,
since only the states in Q (i) are expanded, we have that
there exists 1 < my, ..., m; < nsuchthats = 7, (i+1) =
sm forall 1 <[< h.Hence, p # pw, = P(1ry,) has to hold
forall 1 </ < h.However, takeal <[< h; then, p is com-
puted as p * ' = Py, (0 + D)P (T, (D). 7, (0 + 1)) =
P(7;,,) = pm, (where the last equivalence holds for the
proof of the first part of this lemma). This contradiction ends
the proof. O

Proposition 2 Ler S = (S, g, A, next) be a PFSS, k € N
and ¢ be a Boolean function on S. Then P(S, k, ¢) can be
computed as shown in Fig. 2.

Proof Let M = §8™¢. By Proposition 1, we have to show
only that the final value of r is } ¢(S)(qP¢k)s. To this
end, let

— (s, k,r) = {7 € Pathy (Mg, s) | m(k) =r}, and

- (s, ¢, k,r) = {mw € Pathx(M,s) | Fp €
Pathy (Mg, 5)30 <i <k: p(i) =r AVj <i p(j) #
rax=pli+1)=p...pi}

(i.e., I1(s, @, k,r) contains all the paths of length at most

k leading from s to r without going through error states).
Then, we have that

Y (@Pyh), = (1)
s o)

Y Y P= (12)
s | ¢(s) mell(q,k,s)

Y. 2 Pm= (13)
s | ¢(s) mell(q,¢.k,s)

ooy P (14)

s | ¢(s) mell(g.g.k.s)

Here, the step from (11) and (12) is a known property of
Markov Chains [3], whereas step from (13) and (14) is due
to the definition of Py (Definition 5).

To complete the proof, we only have to observe that, by
Lemma 2, (14) is exactly the computation carried out for the
variable r in function P. In fact, the queue contains, for each
level i, the paths in {wr € [1(q, ¢,i,s) | |7| =i and ¢(s) =
0}, while the ones in {w € Il(s,¢,i,r) | 31 < j < i :
¢ (w(j)) = 1} are used to increment r. O

402

G. Della Penna et al.

Remark I Given a PFSS § = (S, ¢, A, next), k € N, a
Boolean function ¢ on S and a probability threshold p, in
Sect. 5, exploiting Proposition 2, we will present an efficient
disk-based algorithm to check if it holds that P (S, k, ¢) <
p- In other words, our algorithm checks the validity of Finite
Horizon Probabilistic (FHP) Safety Properties, which are a
very important class of properties. This motivates our disk-
based algorithm.

Of course a FHP safety property can be easily defined
with a PCTL [20] formula, namely P_,[true U =kg], thus
also the probabilistic model checker PRISM [32] can be
used to verify such properties. Note, however, that PRISM
can handle a/l PCTL formulas, whereas our algorithm can
only handle FHP safety properties. In particular, PRISM can
verify unbounded horizon properties like P_ ,[true U @] (the
probability of reaching a state satisfying ¢ is less than p),
which cannot be handled with our algorithm.

5 Analyzing probabilistic systems
with the Murg verifier

Building on the computation scheme in Fig. 2, in the follow-
ing we describe an efficient disk-based algorithm to verify
FHP-safety properties, as well as an implementation of such
an algorithm within the Murg verifier. We call the resulting
tool FHP-Murg (Finite Horizon Probabilistic Murg).

5.1 Functions and data structures

The FHP-Murg input defines a PFSS § = (S, ¢, A, next)
to which we will refer in the sequel. The FHP-Murg input
language is the same as the Murg one [29], only FHP-Murgp
has probabilities rather than Booleans on rule guards.

In particular, the FHP-Murg input language allows to de-
fine the Boolean function ¢ on S, the probability threshold
B s.t. P(S,k,¢$) < B must hold (Remark 1), and the ini-
tial state ¢ of S. Note that Murg can have a set of initial
states; however, without loss of generality, in the following
we assume to have just one initial state.

Figure 3 shows the declarations of the functions and data
structures used in FHP-Murg:

— The constant k (implementing k) is our verification hori-
zon and is given to FHP-Murg as a command line pa-
rameter.

— The function Phi () implements ¢.

— The function next () is the nextstate function of the
PFSS S, defined by FHP-Murg input, which takes a state
s as argument and returns the set next(s) of triplets
(t,a, p) s.t. s goes to t with probability p and label a.

— The queues Q_o1d and Q_new are used to store distribu-
tions, thus queue elements are pairs (s, p) where s is a
state and p is the probability of reaching s from the ini-
tial state of S. Such queues play, respectively, the same
role as queues Q (i) and Q(i + 1) in the while loop of
Fig. 2. Note that queues Q_o1d and Q_new are the only

/% k is the horizon, i.e. the max allowed
number of steps to reach an error state
*/

int k;

bool Phi (state s);

state_prob_label_ triplets next (state s);

FIFO_Queue Q old, Q new;

Cache M;

/* prob_Phi incrementally stores the
probability of reaching an error state in

at most k steps */

double prob_Phi;

/* max_prob_Phi is the max allowed value
for prob_Phi x/

double max_prob_Phi;

Fig. 3 Functions and data structures

place in which state explosion may occur in our algo-
rithm. For this reason we implement them on disk analo-
gously to [35]. This allows us to handle fairly large state
spaces.

— The cache M contains pairs (s, p) as for queues Q_old
and Q_new. Note that, however, only s is used to deter-
mine the cache entry in which a particular pair (s, p)
has to be stored. In the following, we use the expression
M[h] to refer to the pair (s, p) stored in entry h of M.
In particular, we write M [h] .state to denote s and
M[h] .prob to denote p.

— prob_Phi accumulates the probability of reaching an
error state (i.e. a state s s.t. Phi (s) = true) and is
incremented every time an error state is reached.

— Constant max_prob_Phi (implementing 8) defines our
probability threshold, i.e. the max allowed value for the
probability prob_Phi.

5.2 Functions Search () and Insert ()

The main function Search (), shown in Fig. 4, efficiently
implements the computation described in Fig. 2.

Function Insert (), also shown in Fig. 4, uses a cache
table M in RAM to save queue space and thus computation
time. Every time it is necessary to enqueue a new pair (state
s, probability p), Insert (s, p) iscalled. If a pair (s, p’)
is already stored in cache M, we simply update the stored
probability p’ in M, adding p to it; otherwise, we store (s, p)
in M. If this causes a collision (i.e., if the slot of M in which
we have to put (s, p) is already occupied), we call function
Checktable () toempty M and thus free the needed cache
slot.

If we were not using M, for each state s at level i we
would have w copies of s in the queue, where w is the
number of paths of length i leading to state s from initial
state ¢, whileas using M our queue contains one or slightly

Finite horizon analysis of Markov Chains with the Murg verifier

403

int Search () {
if (Phi(q))
return(l);

prob_Phi = 0;

/* enqueue initial state g #*/
Enqueue (Q_old, (g, 1));
for (level = 1; level <= k;
clear cache table M;
while (Q_old is not empty) {
(s, p) = Dequeue(Q_old);
foreach (s’, a, p’)
if (Phi(s")) |
prob_Phi = prob_Phi + pxp’;
if (prob_Phi >= max_prob_Phi)
/% property does not hold x/
return (0) ;
} else Insert(s’,
} /% foreach x/
} /+ while %/
/+ level terminated, Q _old is empty #*/
Checktable () ;
swap Q_new with Q_old ;
/+* now, Q _new is empty x/
} /% for x/
return(l); /+ property holds x/
} /% Search () =/

level++) |

in next(s) {

p*p’);

Insert (state s, double p) {
if (s is in M) {

h = hash(s);

prob = M[h].prob + p;

/* new probability of s 1is prob #*/
M[h] = (s, prob);

} else {

collision = Insert_in_table(s, p);

if (collision) {
Checktable () ;
/* there is space to insert now */
Insert_in_table(s, p);
} /* if collision */
} /x else +/
} /% Insert () =*/

Fig. 4 Functions Search () and Insert ()

more than one (depending on how large is M) copy of s. This
saves queue space as well as computation time. Hence, the
more RAM available for M, the less our duplicated states,
queue sizes, number of states to be explored and, finally, our
computation time. For this reason M should be as large as
possible.

5.3 Functions Insert_in_table ()
and Checktable ()

Function Insert_in_table (), shown in Fig. 5, tries
to insert a (state s, probability p) pair in the cache M.

bool Insert_in_table(state s, double p) {

h = hash(s);
if (M[h] is free) {
M[h] = (s, P);

return true;
} else return (M[h].state == s);
} /+ Insert_in_table() */

Checktable () {
move M in Q_new and clear M;
} /+ Checktable() */

Fig. 5 Functions Insert_in_table () and Checktable ()

Insert_in_table (s, p) first calculates the hash value
h of s. Then, if M[h] is a free cache slot, the function
inserts s and p in M [h] and returns true. If M [h] is not
free, Insert_in_table () returns false without inserting
s and p in M.

Function Checktable (), also shown in Fig. 5, simply
flushes M into Q_new. It is actually the only function that en-
queues values in Q_new and is used by function Insert ()
to free M when a collision occurs. Checktable () is also
called at the end of the while in function Search ()
(Fig. 4) to enqueue in Q_new the states visited after the last
call to function Insert (), so that all states reached in the
current level will be expanded in the next one.

6 Experimental results

To show the effectiveness of our approach we run two kind
of experiments. First, in Sect. 6.1, we compare FHP-Murg
with the probabilistic model checker PRISM [32]. Second,
in Sect. 6.2, we run FHP-Murg on a quite large probabilistic
hybrid system. Since our main goal is to use FHP-Murg on
hybrid systems, this second kind of evaluation is very inter-
esting for us.

All the experiments presented were carried out on a
Dual-Pentium III 500 MHz machine with 2GB of RAM, us-
ing FHP-Murg bit compression (option -b, which allocates
to each state variable the smallest number of bits needed to
hold its possible values) and PRISM default options.

6.1 Probabilistic dining philosophers

In this section, we give our experimental results on using
FHP-Murg on the probabilistic protocols included in the
PRISM distribution [32]. We do not consider the protocols
that lead to Markov Decision Processes or to Continuous
Time Markov Chains, since FHP-Murg cannot deal with
them. Hence we only consider Pnueli and Zuck [30] and
Lehmann and Rabin [27, 28] probabilistic dining philoso-
phers protocols.

404

G. Della Penna et al.

module phill

pl: [0..10] init O;
[1 pl=6 —> (pl’=1);
[1 pl=7 => (pl’=1);

[1 pl=10 -> (pl’=0)
endmodule

Fig. 6 Pnueli—Zuck algorithm fragment to be modified in PRISM

module phill
pl: [0..10] init O;
contl: [0..MAX CONT] init 0O;
[] pl=6 & contl!=MAX_CONT ->
(pl’=1) & (contl’=contl+l);
[] pl=6 & contl=MAX CONT —-> (pl’'=1l);
[] pl=7 & contl!=MAX_CONT ->
(pl’=1) & (contl’=contl+l);
[1] pl=7 & contl=MAX CONT —-> (pl’'=1l);

[1] pl1=10 —> (pl’=0) & (contl’=0);
endmodule

Fig. 7 Pnueli—Zuck algorithm modified fragment in PRISM

Moreover, we modify PRISM definitions for such pro-
tocols in order to have a finite horizon property to verify
with FHP-Murg. In fact, FHP-Murg is unable to verify the
PCTL properties for these protocols included in the PRISM
distribution, since they are not of the required (finite horizon
probabilistic safety) form P_[true U =k$]. Our modifica-
tions to the PRISM protocols consist in adding variables to
count the number of times that a philosopher fails in get-
ting both forks before he succeeds. We then verify that these
counters are always less than a given maximum threshold
(MAX_CONT in the following) with a given probability. This
corresponds to verifying quality of service properties, which
are very frequent in practice. For example, in the Pnueli—
Zuck protocol, we changed the code fragment in Fig. 6 with
the one in Fig. 7.

The FHP-Murg definitions for such protocols have been
obtained by translating into FHP-Murg their PRISM (mod-
ified) definitions so that for each protocol, FHP-Murg and
PRISM definitions specify exactly the same Markov Chain.

We want to know the probability P (MAX_CONT, k) of a
counter reaching MAX_CONT in at most & (horizon) steps.
We set k = 20 as our finite horizon (this value occurs in a
property of the Lehmann-Rabin protocol in the PRISM dis-
tribution [32]).

Figure 8 shows the PCTL property to be verified, stat-
ing that the probability that a counter reaches MAX_CONT
has to be at most p. We set p = 1 since for computing

P>=1.0
(cont2 =

[true U<=20 ((contl =
MAX_CONT) | (cont3 =

MAX_CONT) |
MAX_CONT))]

Fig. 8 PCTL formula to be verified on the Pnueli—Zuck algorithm in
PRISM

function calc_prob
(i : 1..NPHIL; c 0..10)
/* probability that p[i] becomes c,
is the number of philosophers */
begin
switch p[i]
/% p[l] corresponds to PRISM pl, p[2] to
PRISM p2 etc. */

: prob;
NPHIL

case 6:

if (¢ = 1) then return 1.0 / NPHIL;
else return 0.0; endif
case 7:
if (¢ = 1) then return 1.0 / NPHIL;
else return 0.0; endif
endswitch;
end;

ruleset philosophers 1..NPHIL do

ruleset next 0..10 do
rule "next"
calc_prob(philosophers, next) ==> begin
pli]l := c;

/+* cont[1] corresponds to PRISM contl,

cont [2] to PRISM cont2 etc. */

if (¢ =1 & (p[i] =6 | pli]l =7) &
(cont[i] !'= MAX_CONT))
then cont[i] := cont[i] + 1;
endif;
if (p[i] = 10 & ¢ = 0) then
cont[i] := 0;
endif;
end;
end;
end;
invariant "starvation" 0.0

forall i 1..NPHIL do
(cont[1i] !'= MAX_CONT)
endforall;

Fig. 9 Pnueli—Zuck algorithm in FHP-Murg

P (MAX_CONT, k) the value of p does not matter. In Fig. 9
we have the corresponding FHP-Murg code.

FHP-Murg invariant invariant p y requires that,
with probability at least p, “all the states reachable in at
most k steps from the initial state satisfy y” (k is FHP-Murg
horizon). Thus, using the notation of Sect. 5 we have that

Finite horizon analysis of Markov Chains with the Murg verifier

405

Table 1 Results for the modified Pnueli—Zuck protocol

NPHIL MAX_WAIT Probability Murg memory ~ PRISM memory Murg time PRISM time
3 3 7.335194164e-05 200 0.9057 51.970 1.487

3 4 6.883132778e-10 200 1.6844 52.610 2.507

4 3 1.88985976¢-06 200 28.1066 242.940 28.72

4 4 2.910383046e-12 200 66.2659 244.170 71.112

5 3 9.164495139¢-08 200 916.8246 1408.290 1023.468

5 4 4.194304e-14 200 N/A 1412.210 N/A

8 3 1.210429649¢-10 1000 N/A 213790.740 N/A

FHP-Murg configuration: -m200 (use 200 Mb of RAM), -max120 (the finite horizon is 20). The last verification had -m1000 (use 1 Gb of RAM).

Memory occupations are in Mb, time is in seconds

Table 2 Results for the modified Lehmann—Rabin protocol

NPHIL MAX_WAIT Probability Murg memory PRISM memory Murg time PRISM time
3 3 4.8039366e-06 800 39.0625 1040.330 84.556

3 4 0.0 800 70.1483 1041.700 121.147

4 3 5.609882064e-08 800 N/A 34307.740 N/A

FHP-Murg configuration: -m800 (use 800 Mb of RAM), -max120 (the finite horizon is 20). Memory occupations are in Mb, time is in seconds

¢ = —y and the probability threshold (max_prob_Phi in
Fig. 3)is (1 — p).

Note that in Fig. 9 the probability threshold for FHP-
Murg invariant is 0, so that FHP-Murgp will not stop
verification before completing all levels of the BF
computation. This forces FHP-Murg to compute
P (MAX_CONT, k).

To assess FHP-Murg effectiveness, in Tables 1 and 2,
we compare the results obtained with FHP-Murg and with
PRISM on, respectively, the Pnueli—Zuck and the Lehmann—
Rabin protocols (modified as described above), setting k =
20 (the finite horizon is 20). In the PRISM Memory and
PRISM Time columns, N/A means that PRISM was unable
to complete the verification; in this case, also the options
-m (totally MTBDD-based verification algorithm) and -s
(algebraic verification algorithm) have been used, with the
same result.

From Table 1 we can see that, for the Pnueli—Zuck algo-
rithm, when NPHIL = 5 (5 philosophers) and MAX_CONT is
4, PRISM is unable to complete any verification within 2GB
of RAM, independently on which of the three PRISM veri-
fication algorithms (totally MTBDD-based, algebraic or hy-
brid) is chosen. Similarly, for the Lehmann-Rabin algorithm,
in Table 2 we see that when NPHIL is 4 and MAX WAIT is
3 PRISM is unable to complete the verification task in the
same environment as above.

FHP-Murgp was always able to complete all the given
verifications tasks. However, as it can be seen from Tables 1
and 2, for the verification tasks in which PRISM terminates,
PRISM is always faster than FHP-Murg.

As for the numerical quality of FHP-Murg, we have that
when both PRISM and FHP-Murg terminate they both give
the same value for P (MAX_CONT, k) (column Probability in
Tables 1 and 2).

To sum up, our experimental results show that, for proba-
bilistic protocols involving arithmetical computations, FHP-

Murg has to be considered among the available (and valu-
able) tools for automatic finite horizon analysis of safety
properties.

6.2 Analysis of a probabilistic hybrid system
with FHP-Murg

In this section we show our experimental results on using
FHP-Murg for the analysis of a real-world hybrid system,
namely, the control system for the gas turbine of a 2 MW
electric co-generative power plant (ICARO) in operation at
the ENEA Research Center of Casaccia (Italy).

Our control system (Turbogas Control System, TCS in
the following) is the heart of ICARO and is indeed its most
critical subsystem. Unfortunately, TCS is also the largest
ICARO subsystem, thus making the use of model checking
for such hybrid system a challenge.

Depending on the operating conditions (e.g. startup, nor-
mal, shutdown) ICARO models are widely different. Here
we only focus on normal operating conditions, i.e. the situ-
ation in which ICARO is running at its nominal (setpoint)
power. In particular, our model cannot be used to study
system behaviour during transient operating modes (e.g. at
startup or shutdown).

ICARO plant consists of many subsystems. Here we
only focus on one of the many subsystems of ICARO (e.g.
see [5-7]). Namely we focus on the Gas Turbine ICARO
subsystem that we call in the following ICARO Turbogas
Control System (TCS). TCS is the heart of ICARO and is
indeed ICARO most critical subsystem. Unfortunately, TCS
is also the largest ICARO subsystem, thus making the use of
model checking for such hybrid system a challenge.

Unless otherwise stated, all our data (e.g. block dia-
grams, parameter values, etc) are taken from the ICARO
documentation [18].

406

G. Della Penna et al.

Electric Power Generated by the Alternator (Pel)
Turbine Rotation Speed (Vrot)
User Demand (u) L
- = >
Controller Fuel Valve Turbogas =
Opening (fg102) >

—

Compressor Pression (Pmc)
Exhaust Smokes Teperature (Texh)

Fig. 10 High-level block diagram of ICARO Turbogas Control System

TCS is a control system, that is a (hybrid) system in
which we can distinguish two subsystems: the plant (i.e.
the controlled system) and the controller (which sends
commands to the plant in order to meet given requirements
on the whole system behaviour). Figure 10 shows the high
level block diagram for TCS.

The block named Turbogas in Fig. 10 models the Gas
Turbine module. As a matter of fact this module consists
of many subsystems (e.g. the compressor, the combustion
chamber, the turbine itself and the generator). For our pur-
poses here we can simply look at its input-output model. The
module has the following input variables.

— Variable fg102 takes value in the real interval [0,1]. This
variable gives the opening fraction of the turbogas fuel
gas valve (namely valve FG102). It takes value 0 when
the valve FG102 is fully closed (no fuel can flow trough
the valve) and value 1 when the it is fully opened. This is
a control variable, i.e. a variable whose value can be cho-
sen by the controller so as to achieve predefined goals.

— Variable u models the User Demand of electric power.
This variable has to be considered as a disturbance, i.e.
a variable whose value we (i.e. the controller) cannot
choose.

The output variables of the module are the following ones.

P, the Electric power generated by the alternator.
— Viot, the Rotation speed of the gas turbine.

— Texh, the Temperature of the exhaust smokes.

— Ppc, the Pressure of the compressor.

For the purposes of our analysis we used the ODE
(Ordinary Differential Equation) model, shown in Fig. 11,

Pu(t) = ar,1Pe(t) + 01,2 fg102(t) + ax,3u(t)
Teon(t) = a2,1Tean(t) + az,2fgl02(t) + az,3(Pa(t) —PY)
+ 2,4(Pe(t) — Ppe)
Vior(t) = 5,1 Vot (t) + 23,2 fg102(t) + 3 3(Per(t) — P2)
Pme(t) € [MIN Py, MAX _Pp]
| Prnc(t) | < MAX_D_Pp,c
u(t) € [0, MAX U]
|a(t) | < MAX_DU

Fig. 11 Turbogas ODE model used for our analysis

to link turbogas input variables with output variables. Of
course such a model is only valid in a neighborhood of the
setpoint.

Note that, according to the model in Fig. 11, the com-
pressor pressure P can change value nondeterministically
as long as it satisfies the constraints given in Fig. 11. We
do not need a more detailed model here since the compres-
sor pressure is only used as input to the fuel gas valve con-
troller whose requirements do not involve the compressor
pressure.

We do not know in advance the user demand u. However,
by making some hypothesis on the user demand u dynamics
we can follow for the user demand model in Fig. 11 the same
approach we used for the compressor pressure. Namely, we
simply ask that the user demand u(z) be in the interval
[0, MAX_U] (the user demand is always non-negative since
users cannot produce electric power) and the variation speed
of the user demand (z) be at most M AX_D _U. Note that
for the model in Fig. 11 the only input variable is fg102, all
other variables (i.e. Pel, Viot, Texh» Pmc, 1) are state as well
as output variables.

The block named Controller in Fig. 10 is the fuel gas
valve controller of the Turbogas. Figure 12 shows the de-
tailed block diagram for this component.

From Fig. 12 it is clear that the turbogas controller output
is obtained as the minimum (block MIN) of the outputs of
the three subsystems N1 Governor, Power Limiter, Exhaust
Temperature Limiter.

All the controller subsystems are built from the elemen-
tary cell shown in Fig. 13. In this cell we have the simul-
taneous presence of linear blocks (e.g. the integrator block
labeled 1/s, saturation blocks, test for > 0 and logical
(AND) blocks. This makes the elementary cell a hybrid sys-
tem. Since all subsystems in TCS are based on such kind
of cell, it turns out that TCS itself is a (quite big) hybrid
system.

The NI Governor block computes the power demand
with the goal of maintaining the turbine rotation speed
within given bounds.

The Power Limiter block computes the power demand
with the goal of maintaining the electric power generated
within given bounds.

The Exhaust Temperature Limiter block computes the
power demand with the goal of maintaining the temperature
of the exhaust smokes within given bounds.

The subsystem MIN in Fig. 12 computes the minimum
among its inputs. Moreover, the block MIN returns the name
(index) of the winner (i.e. of the input which attained the
minimum value) on the output labeled WINNER.

The block Limiter in Fig. 12 saturates the power demand
to 12MW.

The block Adjust together with the OFFSET parameter
in Fig. 12 translates the power demand from the Limiter
block into a fuel valve opening command, i.e. into a real
number in the range [0,1].

The goal of the turbogas controller is to set the turbogas
control variable fg102 so as to keep the value of turbogas

Finite horizon analysis of Markov Chains with the Murg verifier

407

Vrot
- N1
Governor
OFFSET
Pel M 12MW
Power I — o o
Limiter N Limiter Adjust fg102
Texh Exhaust WINNER '
Temperature fg102: Fuel Valve Opening
P Limiter Pel: Electric Power Generated by the Alternator
me Vrot: Turbine Rotation Speed
Texh: Exhaust Smokes Temperature
Pmc: Compressor Pression
Fig. 12 Turbogas fuel gas valve controller
Kp
+ 1OMW
S . M
N SAT
. 10MW cell
Ki
P B output
¢ /s A —/_S AT
A B
09 u = min(output N1 Governor,
output Power Limiter,
AND output Exhaust Temperature Limiter)
WINNER WINNER reset at u+ 4 kW
=i?

Fig. 13 Elementary cell used for the construction of turbogas controller subsystems: N1 Governor, Power Limiter, Exhaust Temperature Limiter.
Cell Inputs: S, P, WINNER. Cell Parameters: i, A, B. Known Constants: Kp, Ki (from [18])

Electric Power setpoint value: P5=2000 (KW).
Exhaust Smokes Temperature setpoint value: T2, ,=552 (C).
Turbine Rotation Speed setpoint value: V,%,,=75 (RPM)

Compressor Pression setpoint value: PS.=12 (Bar)

Fig. 14 Turbogas setpoint values

1300 < Py (t) <2500
200 < Topn (t) < 580
40 < Vo (£) < 120

Fig. 15 Turbogas Control System requirements

output variables Pe|, Viot, Texh as close as possible to their
setpoint (as shown in Fig. 14) and always within the limits
given in Fig. 15, notwithstanding variations in the user de-
mand u. Such limits are our requirements, i.e. the properties
that we will have to check during verification.

In [15] it is shown that by adding finite precision real
numbers to Murg, we can use it to automatically verify TCS.
In particular, in [15] it has been shown that, if the speed of

variation of the user demand for electric power (MAX_D_U
in the following) is greater than or equal to 25 (KW/sec),
TCS fails in maintaining the ICARO parameters within the
required safety ranges. A TCS state in which one of the
ICARO parameters is outside its given safety range is of
course considered an error state.

However, in [15] the user demand has been modeled
rather roughly, using nondeterministic automata. Here we
show that using FHP-Murg we can define and, more im-
portantly, automatically analyze a more accurate model for
the user demand by modeling it using a Markov Chain. To
do this we define a function p(u, i) as follows:

(u — ug)|u — uo|

04+p 2 ifi =—1
pu,i) = 0.2 ifi =0 (15)
(uo —uw)|lu —uol ...
0'4+'B—M2 ifi =+1

where M = MAX_U (maximum user demand value), g is a
suitable elasticity constant and ug = % is the user demand
setpoint.

408

G. Della Penna et al.

Table 3 Results for the Turbogas control system

MAX DU Reachable States Rules Fired Finite Horizon CPU Time Probability

25 3018970 8971839 1600 68562.570 7.373291768e-05
35 2226036 6602763 1400 50263.020 1.076644427e-04
45 1834684 5439327 1300 41403.150 9.957147381e-05
50 83189 246285 900 2212.360 3.984375e-03

FHP-Murg configuration: -m500 (use 500 Mb of RAM). Time is given in seconds

Denoting with u(¢) the user demand value at time ¢ we
can define the (stochastic) dynamics for the user demand as
follows:

max(u(t) — «, 0)
u(t)
min(u(t) + o, M)

with prob. p(u(t), —1)

with prob. p(u(t), 0)

with prob. p(u(t), +1)
(16)

ut+1) =

where ¢ = MAX_D_U.

In this way we have that, the further u(¢) from ug, the
higher the probability to return towards u, i.e. to decrement
u(t) if u(t) > ug and to increment it otherwise.

To see that (16) is indeed a Markov Chain, it is sufficient
to observe that, Vg, the sum of the outgoing transitions is
obviously 1. Moreover, since W <1, as long
as —0.4 < B < 0.4 holds, all probability values are between
0 and 1.

With FHP-Murg the definition of the Markov Chain
(16), starting from the TCS model, is quite simple. This is
done in Fig. 16, where user_demand (u, d-u) computes
p(u,d_u) (15) and function main updates the system state,
in particular updates u as described in (16).

In Fig. 3 we report the results ofsome verification runs
done by FHP-Murg with 8 = 0.4. We are interested in cases
where the error probability is greater than zero, and from the
results in [15] we know that this is the case if we choose
MAX_D_U greater than or equal to 25 and the horizon value
no smaller than |PathErr(n)|, where PathErr(n) is the short-
est path to a TCS error state when MAX_D_U = n. Thus, in
our experiments here we choose our horizon k to be equal to

100 - (Wl . In this way we check the error probabil-
ity in the error neighborhood.

Table 3 allows us to evaluate the probability of reaching
an error state when MAX_D_U is greater than or equal to 25.
Note that such a probability is rather small, suggesting that

/* user demand disturbance: takes values

-1, 0 and 1 =/

ruleset d_u -1..1 do

rule "time step" user_demand(u, d_u) ==>
main(u, d_u);

end;

Fig. 16 Probabilistic user demand ruleset in FHP-Murg

in many cases setting MAX_D_U to 25 may be acceptable.
Note that this kind of evaluations were not possible with the
nondeterministic verification of TCS carried out in [15].

7 Conclusions

In this paper we presented (Sects. 3 and 4) an explicit
disk-based verification algorithm for Probabilistic Systems
defining discrete timelfinite state Markov Chains. Given a
Markov Chain and an integer k (horizon), our algorithm
checks that the probability of reaching a given error state
in at most k steps is below a given probability threshold.

We described (Sect. 5) an implementation of our algo-
rithm within a suitable extension of the Murg verifier that
we call FHP-Murg (Finite Horizon Probabilistic-Murg).

Finally, we showed (Sect. 6) experimental results com-
paring FHP-Murg with (a finite horizon subset of) PRISM, a
state-of-the-art symbolic model checker for Markov Chains.
Our experimental results show that FHP-Murg can handle
systems that are out of reach for PRISM, namely those in-
volving arithmetic operations on the state variables (e.g. hy-
brid systems).

Future work includes extending our approach to other
models (e.g. Continuous Time Markov Chains) as well as
to other kinds of PCTL formulas, e.g. formulas with un-
bounded until.

References

1. Bahar, R.I., Frohm, E.A., Gaona, C.M., Hachtel, G.D., Macii, E.,
Pardo, A., Somenzi, E.: Algebraic decision diagrams and their ap-
plications. In: ICCAD ’93: Proceedings of the 1993 IEEE/ACM
International Conference on Computer-Aided Design, pp. 188—
191. IEEE Computer Society Press, Los Alamitos, CA, USA
(1993)

2. Baier, C., Clarke, E.M., Hartonas-Garmhausen, V., Kwiatkowska,
M., Ryan, M.: Symbolic model checking for probabilistic pro-
cesses. In: Degano, P., Gorrieri, P., Marchetti-Spaccamela, A.
(eds.) Automata, Languages and Programming, 24th International
Colloquium, ICALP’97, Bologna, Italy, Proceedings, vol. 1256 of
Lecture Notes in Computer Science, pp. 430—440. Springer, Berlin
(1997)

3. Behrends, E.: Introduction to Markov Chains, Vieweg. Germany
(2000)

4. Bianco, de Alfaro: Model checking of probabilistic and nondeter-
ministic systems. In: Thiagarajan, P.S. (ed.) Foundations of Soft-
ware Technology and Theoretical Computer Science, 15th Confer-
ence, Bangalore, India, Proceedings, vol. 1026 of Lecture Notes in
Computer Science, pp. 499-513. Springer, Berlin (1995)

Finite horizon analysis of Markov Chains with the Murg verifier

409

10.

11.

12.
13.
14.

15.

16.

Bobbio, A., Ciancamerla, E., Franceschinis, G., Gaeta, R.,
Minichino, M., Portinale, L.: Methods of increasing modelling
power for safety analysis, applied to a turbine digital control sys-
tem. In: Anderson, S., Bologna, S., Felici, M. (eds.) Computer
Safety, Reliability and Security 21st International Conference,
SAFECOMP 2002, Catania, Italy, Proceedings, vol. 2434 of Lec-
ture Notes in Computer Science, pp. 212-223. Springer, Berlin
(2002)

Bobbio, A., Ciancamerla, E., Gribaudo, M., Horvath, A.,
Minichino, M., Tronci, E.: Model Checking based on fluid petri
nets for the temperature control system of the icaro co-generative
Planti. In: Anderson, S., Bologna, S., Felici, M. (eds.) Computer
Safety, Reliability and Security, 21st International Conference,
SAFECOMP 2002, Catania, Italy, Proceedings, vol. 2434 of Lec-
ture Notes in Computer Science, pp. 273-283. Springer, Berlin
(2002)

Bobbio, A., Bologna, S., Minichino, M., Ciancamerla, E.,
Incalcaterra, P., Kropp, C., Tronci, E.: Advanced techniques for
safety analysis applied to the gas turbine control system of Icaro
co generative plant. In: Proceedings of X Convegno TESEC, Gen-
ova, Italy (2001)

Bryant, R.: Graph-based algorithms for Boolean function manip-
ulation. IEEE Trans. Comput. C-35(8), 677691 (1986)

Burch, J.R., Clarke, E.M., McMillan, K.L., Dill, D.L., Hwang,
L.J.: Symbolic model checking: 10%° states and beyond. Inf. Com-
put. 98(2), 142-170 (1992)

Clarke, E.M., McMillan, K.L., Zhao, X., Fujita, M., Yang, J.:
Spectral transforms for large Boolean functions with applications
to technology mapping. In: Proceedings of the 30th International
on Design automation conference, pp. 54—60. ACM Press, New
York (1993)

Courcoubetis, C., Yannakakis, M.: Veritying temporal properties
of finite-state probabilistic programs. In: Proceedings of the IEEE
Conference on Decision and Control, pp. 338-345. IEEE Press,
Piscataway, NJ (1988)

Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic
verification. J. ACM. 42(4), 857-907 (1995)

CUDD Web Page: http://vlsi.colorado.edu/~fabio/ (2004)

de Alfaro, L.: Formal verification of performance and reliability
of real-time systems. Technical Report STAN-CS-TR-96-1571,
Stanford University (1996)

Della Penna, G., Intrigila, B., Melatti, 1., Minichino, M.,
Ciancamerla, E., Parisse, A., Tronci, E., Venturini Zilli, M.: Au-
tomatic verification of a turbogas control system with the murg
verifier. In: Maler, O., Pnueli, A. (eds.) Hybrid Systems: Computa-
tion and Control, 6th International Workshop, HSCC 2003 Prague,
Czech Republic, Proceedings, vol. 2623 of Lecture Notes in Com-
puter Science, pp. 141-155. Springer, Berlin (2003)

Della Penna, G., Intrigila, B., Melatti, 1., Tronci, E., Venturini
Zilli, M.: Finite horizon analysis of markov chains with the Murg
verifier. In: Geist, D., Tronci, E. (eds.) Correct Hardware Design
and Verification Methods, 12th IFIP WG 10.5 Advanced Research
Working Conference, CHARME 2003, L’Aquila, Italy, Proceed-
ings, vol. 2860 of Lecture Notes in Computer Science, pp. 394—
409. Springer (2003)

. Dill, D.L., Drexler, A.J., Hu, AJ., Yang, C.H.: Protocol veri-

fication as a hardware design aid. In: Proceedings of the 1991
IEEE International Conference on Computer Design on VLSI in
Computer and Processors, pp. 522-525. IEEE Computer Society,
Washington, DC (1992)

18.
19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.
33.

34.
35.

36.

ENEA: Proprietary ICARO Documentation (2001)

Hansson, H.: Time and Probability in Formal Design of Dis-
tributed Systems. Elsevier, Amsterdam (1994)

Hansson, H., Jonsson, B.: A logic for reasoning about time and
probability. Formal Aspects Comput 6(5), 512-535 (1994)

Hart, S., Sharir, M.: Probabilistic temporal logics for finite and
bounded models. In: Proceedings of the sixteenth annual ACM
symposium on Theory of computing, pp. 1-13. ACM Press, New
York (1984)

Holzmann,G.J.: Design and Validation of Computer Protocols.
Prentice-Hall, Upper Saddle River, NJ (1991)

Holzmann, G.J.: The spin model checker. IEEE Trans. Software
Eng. 23(5), 279-295, (1997)

Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Proba-
bilistic symbolic model checker. In: Field, T., Harrison, P.G.,
Bradley, J.T., Harder, U. (eds.) Computer Performance Evaluation,
Modelling Techniques and Tools 12th International Conference,
TOOLS 2002, London, UK, Proceedings, vol. 2324 of Lecture
Notes in Computer Science, pp. 200-204. Springer, Berlin (2002)
Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic symbolic
model checking with PRISM: A hybrid approach. In: Katoen,
J.-P., Stevens, P. (eds.) Tools and Algorithms for the Construction
and Analysis of Systems, 8th International Conference, TACAS
2002, Held as Part of the Joint European Conference on Theory
and Practice of Software, ETAPS 2002, Grenoble, France, April
8-12, 2002, Proceedings, vol. 2280 of Lecture Notes in Computer
Science, pp. 52—66. Springer, Berlin (2002)

Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing.
Inf. Comput. 94(1), 1-28 (1991)

Lehmann, D., Rabin, M.: On the advantages of free choice: A
symmetric fully distributed solution to the dining philosophers
problem (extended abstract). In: Proceedings of 8th Symposium
on Principles of Programming Languages, pp. 133-138 (1981)
Lynch, N., Saias, 1., Segala, R.: Proving time bounds for random-
ized distributed algorithms. In: Proceedings of the thirteenth an-
nual ACM symposium on Principles of distributed computing,
pp. 314-323. ACM Press, New York (1994)

Murphi Web Page: http://sprout.stanford.edu/dill/murphi.html
(2004)

Pnueli, A., Zuck, L.: Verification of multiprocess probabilistic
protocols. Distrib. Comput. 1(1), 53-72 (1986)

Pnueli, A., Zuck, L.D.: Probabilistic verification. Inf. Comput.
103(1), 1-29 (1993)

PRISM Web Page: http://www.cs.bham.ac.uk/~dxp/prism/ (2004)
Segala, R., Lynch, N.: Probabilistic simulations for probabilistic
processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR ’94, Con-
currency Theory, 5th International Conference, Uppsala, Sweden,
Proceedings, vol. 836 of Lecture Notes in Computer Science, pp.
481-496. Springer, Berlin (1994)

SPIN Web Page: http://spinroot.com (2004)

Tronci, E., Della Penna, G., Intrigila, B., Venturini Zilli, M.: Ex-
ploiting transition locality in automatic verification. In: Margaria,
T., Melham, T.F. (eds.) Correct Hardware Design and Verification
Methods, 11th IFIP WG 10.5 Advanced Research Working Con-
ference, CHARME 2001, Livingston, Scotland, UK, Proceedings,
vol. 2144 of Lecture Notes in Computer Science, pp. 259-274.
Springer, Berlin (2001)

Vardi, M.: Automatic verification of probabilistic concurrent
finite-state programs. In: 26th Annual Symposium on Foundations
of Computer Science, pp. 327-338, IEEE CS Press, Portland, OR
(1985)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

